
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017 3427

Traffic-Aware Virtual Machine Migration
in Topology-Adaptive DCN

Yong Cui, Zhenjie Yang, Shihan Xiao, Xin Wang, and Shenghui Yan

Abstract— Virtual machine (VM) migration is a key technique
for network resource optimization in modern data center net-
works. Previous work generally focuses on how to place the VMs
efficiently in a static network topology by migrating the VMs
with large traffic demands to close servers. As the flow demands
between VMs change, however, a great cost will be paid for the
VM migration. In this paper, we propose a new paradigm for
VM migration by dynamically constructing adaptive topologies
based on the VM demands to lower the cost of both VM migration
and communication. We formulate the traffic-aware VM migra-
tion problem in an adaptive topology and show its NP-hardness.
For periodic traffic, we develop a novel progressive-decompose-
rounding algorithm to schedule VM migration in polynomial
time with a proved approximation ratio. For highly dynamic
flows, we design an online decision-maker (ODM) algorithm
with proved performance bound. Extensive trace-based simu-
lations show that PDR and ODM can achieve about four times
flow throughput among VMs with less than a quarter of the
migration cost compared to other state-of-art VM migration
solutions. We finally implement an OpenvSwitch-based testbed
and demonstrate the efficiency of our solutions.

Index Terms— Data center network, VM migration, wireless
communication.

I. INTRODUCTION

W ITH the proliferation of cloud computing, virtualization
has become a popular practice in the design of data

centers. Without considering the specific running status of the
user applications, network operators can simply migrate the
VMs to achieve better resource utilization, failure tolerance,
load balancing, energy efficiency, and so on [1], [2].

As VM migration is a key feature for elastic computing and
plays a critical role in data center operation, intensive recent
efforts have been made to minimize the cost of migrating
one or several VMs from an initial placement to the target
one in the migration phase [3]–[5]. In order to benefit from
high-performance live migration, there is also a need to reduce
the communication cost among VMs under the optimized
target placement, which we refer as communication phase.

Manuscript received December 24, 2016; revised June 24, 2017; accepted
August 4, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor A. Wierman. Date of publication September 8, 2017; date of current
version December 15, 2017. This work was supported in part by the National
Natural Science Foundation of China under Grant 61422206 and in part by
the Tsinghua National Laboratory for Information Science and Technology.
The work of X. Wang was supported by the NSF CNS under Grant 1526843.
(Corresponding author: Yong Cui.)

Y. Cui, Z. Yang, S. Xiao, and S. Yan are with the Department of
Computer Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: cuiyong@tsinghua.edu.cn; yangzj15@mails.tsinghua.edu.cn;
xiaosh12@mails.tsinghua.edu.cn; yansh14@mails.tsinghua.edu.cn).

X. Wang is with the Department of Electrical and Computer
Engineering, Stony Brook University, Stony Brook, NY 11790 USA (e-mail:
x.wang@stonybrook.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Digital Object Identifier 10.1109/TNET.2017.2744643

With the increasing trend of running communication-intensive
applications in data centers [6], [7], intuitively, the VMs with
large traffic demands should be migrated to servers in close
proximity (in the topological sense). The observation of the
VM traffic stability at large timescales in [6] confirms the
feasibility of lowering the communication cost by optimizing
the VM placement based on traffic statistics, i.e., the so-called
traffic-aware VM placement. Recent efforts in [8] and [9]
further take the routing options into account and propose to
jointly optimize the VM placement and proper routing paths
for the VM communication, which achieves a consistent and
significant improvement over the common practice in data
centers.

While great efforts have been made on minimizing the
cost of the migration phase or the communication phase, few
consider their joint optimization. However, there may be a
trade-off to reduce these two costs. For example, a good
placement obtained by minimizing the communication cost
may be a poor option for the migration, due to the high cost
of reshuffling existing VMs [10]. To address this challenge,
our basic motivation is that, if the network topology can be
changed dynamically with reconfigurable links, the servers
which hold the VMs with large traffic demands can be bridged
together with direct short links. In this way, little migration is
needed while the communication cost is reduced remarkably.

In this paper, we explore a novel paradigm, called the
topology-adaptive DCN, to lower the cost of both the migra-
tion phase and communication phase. With the advance of
software-defined networking (SDN) technologies in DCN,
recent studies have shown a great potential to implement a
reconfigurable network topology [11]–[19]. Nowadays, there
are mainly two technologies to achieve this topology-adaptive
objective. The first is adding the 60GHz wireless radios or the
Free-Space Optics (FSO) [11], [12], [14], [16], [17]. The sec-
ond is adding the optical circuit switches (OCS) with fast
circuit switching to adapt the topology [13], [15], [18], [19].
The core of the above technologies is to collect traffic infor-
mation through the OpenFlow protocol on the SDN platform
and then build configurable links on-demand by the SDN
controller [14]. As topology reconfiguration can be achieved
within a few microseconds, it would have little impact on the
total performance gains [11], [16], [17].

To the best of our knowledge, this is the first work to
study VM migration with a reconfigurable network topology.
Specifically, to minimize the total cost in the VM migration
and communication, we will jointly make three challeng-
ing decisions for optimal performance in this work: (1) the
migration decision, i.e., which VMs should be migrated to
which physical servers, with respect to the server capacity;
(2) the topology decision, i.e., which configurable links should
be built to implement a suitable topology for the current
VM demands, taking into account the link conflict constraints;
(3) the routing decision, i.e., how should the VMs route their

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

3428 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

traffic demands over the newly configured network topology,
with respect to the link capacity.

Existing work on the joint optimization of the VM place-
ment with other metrics like routing, link utilization or energy
consumption [6], [8], [9], [20] are generally shown to be
NP-hard and only design heuristic algorithms. In this paper,
we will show how to address this general challenge with
a proved approximation ratio using an abstracted model-
ing solution. The main contributions of our work are as
follows:

• We concurrently consider the costs of migration phase
and communication phase, and formulate the traffic-aware
VM migration problem in an adaptive topology, which is
shown to be NP-hard.

• For data centers with periodic traffic, we propose a novel
progressive-decomposition-rounding (PDR) algorithm to
solve the migration problem and prove its approximation
ratio in three steps. We show that our technique can be
extended to solve the VM migration optimization under
different topology adaption technologies in DCNs with
proved approximation ratios.

• For data centers with random and dynamic flows,
we design an online decision-maker (ODM), which
applies the Lyapunov optimization framework to schedule
VM migration requests in real-time. We further analyze
and prove the performance bound of ODM.

• We conduct real-trace based evaluations to demonstrate
the efficiency of our solutions under various scenarios,
and then validate the feasibility of our solutions in
improving the flow performance with implementation
over an OpenvSwitch-based testbed.

The remainder of this paper is organized as follows.
Section II illustrates our problem formulation. In Section III,
we provide scheduling analysis and present an offline
algorithm, PDR. We further design an online decision-
maker (ODM) to schedule VM migration requests in real-
time in Section IV. We evaluate the performance of our
scheduling algorithms in Section V and make deployment
discussions in Section VI. Finally, we introduce the related
work in Section VII, and conclude our work in Section VIII.

II. PROBLEM FORMULATION

In this section, we introduce the motivation of our work
as well as the basic system model, and then formulate the
migration problem.

A. Motivating Example

To begin with, we introduce an example to illustrate how
we can address the performance bottleneck of VM migration
using the topology adaption. In Fig. 1, we compare the
migration and communication costs for different migration
solutions. There are two VMs, A and B with a memory
size of 100 MBytes each, while the communication traffic
between them is 400 MBytes. Suppose the servers are very
busy that each server can only accommodate at most one VM.
For simplicity, one unit of network cost is defined as routing
one MByte of the traffic over one hop. At the same time,
the migration paths are pre-specified as the ones with the least
number of hops, and wireless links are configured to serve in
the communication phase.

In Fig. 1, if VM A and B communicate without any
migration, the migration cost is zero and the communication
cost is 400MB × 6 hops=2400, then the total cost is 2400.

Fig. 1. Cost comparison of different VM migration solutions. (a) Wired-only
VM migration. (b) Topology-adaptive VM migration.

We call this an original cost in the following. With an
optimal migration performed over a static wired topology as
shown in Fig. 1a, we migrate A to A′ (green solid line)
and A′ communicates with B (red solid line). Then a lower
communication cost 1600 is achieved at the cost of a higher
migration cost at 600, which reduces the total cost by only 8%.
However, if we take a topology-adaptive strategy as in Fig. 1b,
we migrate A to A′ (green solid line) at a migration cost
of 400 and A′ communicates with B (red solid and dotted line)
at a communication cost of 1200, the total cost is reduced
by 33% compared with the original cost. Finally, if wireless
has a larger coverage, the optimal topology-adaptive solution
in Fig. 1 is to build a direct wireless link between the
ToR (Top-of-Rack) switches of A and B, which produces the
lowest communication cost of 1200 and zero migration cost.
In this case, we reduce the total cost by 50%. We can see
that a single link adaptation can achieve a high performance
benefit for VM migration and communication. We note that a
more flexible strategy which mixes multiple wireless links and
wired links to construct hybrid paths for VM migration and
communication is possible to gain higher benefits. We will
formulate the flexible optimization problem formally in the
following and show its non-triviality.

B. VM Placement

Motivated by the above example, the objective of our
system is to reduce the total cost of VM migration and
communication. We take the VM demands in one period as
an input matrix D for our system. Each element in the matrix
denotes a VM-level flow fpq ∈ F from the VM Mp to Mq

with a traffic demand dpq (F is the flow set).
At a high level, each period consists of two phases:

(1) the migration phase to transform the initial VM placement
A to a new placement B; (2) the communication phase
that the VMs communicate with each other under the new
placement B. At the beginning of each period, our system
uses an input demand matrix D to compute a new VM place-
ment B, a new network topology and also the routing plan.
The placement B is used as the migration objective in the
migration phase, while the new topology and routing plan are
deployed at the head of communication phase to facilitate the
VM communications.

We assume existing capacity tools (CPU/memory based) has
determined the number of VMs that a server can host [6].
Hence we use one CPU/memory allocation on a server as
the basic unit for VM placement and denote it as a slot.
We denote the active VMs in one period as a VM set
M = {M1, M2, ..., Mn} and the available slot set as L =
{L1, L2, ..., Lm}, n ≤ m. Then a VM placement can be

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: TRAFFIC-AWARE VM MIGRATION IN TOPOLOGY-ADAPTIVE DCN 3429

denoted as a one-to-one mapping from a VM set to a
slot set. Without loss of generality, we index the slots by
their VM index in the initial placement A, i.e., the VM Mi

is located at slot Li under the placement A. For the new
placement B, we use a binary variable yij ∈ {0, 1} to
denote whether VM Mi is placed in the slot Lj under the
placement B.

C. Adaptive Topology

We denote the topology of DCN as a graph G(V, E), where
V denotes all the switches and servers, and E denotes all
the links connecting them including the configurable wireless
links. Let S denote all the servers, then the set V \S denotes
all the switches. The main challenge of routing in an adaptive
topology is to describe the flow conservation constraint when
the new VM placement B is not decided yet. In the following,
we present a novel linear formulation to address this issue.

Let a binary variable xpq
ij denote whether a flow fpq routes

through the link eij , and bij is the link capacity of link
eij ∈ E. The flow conservation constraints under the new
VM placement B = {yij} can be equally translated to the
following linear equations:

∀vi ∈ S, fpq ∈ F :∑

eij∈E

xpq
ij −

∑

eji∈E

xpq
ji =

∑

k∈�L(i)

ypk −
∑

k∈�L(i)

yqk (1)

∀vi ∈ V \ S, fpq ∈ F :∑

eij∈E

xpq
ij −

∑

eji∈E

xpq
ji = 0 (2)

where L̂(i) denotes all the slots in server i.
The constraint of the equation (1) applies when a node i

in the server set S is the source or destination sever. The
right-hand side (RHS) of the equation equals 1 or −1, so that
the traffic out of the source server and the traffic into the
destination server equals the flow demand. Otherwise, if node i
in S is not the source or destination server, the RHS equals 0.
Similarly, when the node i is an intermediate switch, the flows
are constrained by the equation (2) according to the flow
conservation rule.

D. Conflict Constraints for Configurable Links

Although building more configurable links would allow for
more flexibility to find a better solution, in a topology-adaptive
DCN, configurable links are not created without constraints.
For example, there exists interference among the wireless
links, while for the OCSs and FSOs, there are conflicts for
creating links at the same port because each port can only
support at most one link. In the following, we take the
configurable links as the wireless links and discuss issues to
consider for other mechanisms in Section VI.

Without loss of generality, we construct a conflict graph
Gc(Vc, Ec) to describe the conflict relations among all the
configurable wireless links. In the following, we simplify
the analysis by assuming the binary interference model [21],
and we will show how to extend our solution to the SINR
interference model in Section VI. In the binary interference
model, two configurable links e1 and e2 are said to have
conflicts if either e1 is in the interference range of e2 or vice
versa. Let each configurable link e be a vertex in Gc, and add
an edge (e1, e2) between any two vertices e1 and e2 if and
only if they conflict with each other. Finally, we also add all

TABLE I

NOTATIONS AND DEFINITIONS

the fixed wired links into the conflict graph, i.e., each wired
link is a vertex in Gc but has no edges with other vertices.

In the conflict graph, two vertices are said to be independent
if there is no direct edge connecting them. An independent
set (IS) in a conflict graph Gc(Vc, Ec) is defined as a vertex
subset of Vc where any two vertices are independent. Hence
a feasible solution for setting up configurable links in G is to
select an IS in the conflict graph Gc, i.e., we have

zij ∈ {0, 1}, ∀eij ∈ E (3)

zij + zuv ≤ 1, ∀(eij , euv) ∈ Ec (4)

where zij denotes whether the link eij is selected to build.1

and constraint (4) ensures the independence among links.
For clarity, we list all the related notations and definitions
in Table I.

In the following, we give the relationship between the flow
variable xpq

ij and link variable zij . Since a link is considered
to be built only if there exists flow routing over it, we have
the link existence constraint: xpq

ij ≤ zij , ∀fpq ∈ F , eij ∈ E.
Further, we have the link capacity constraint for routing:∑

fpq∈F dpqx
pq
ij ≤ bij , ∀eij ∈ E, which means the total traffic

demand of all the flows which route over the link eij is within
the link capacity bij . Benefited from the binary property of
xpq

ij ∈ {0, 1} and zij ∈ {0, 1}, the above two constraints can
be combined and equally translated in a simplified way:

∑

fpq∈F
dpqx

pq
ij /bij ≤ zij , ∀eij ∈ E (5)

E. Migration and Communication Cost

1) Migration Cost: To evaluate the cost of migration phase,
we use aij to denote the general migration cost by migrating
the VM Mi from its previous slot to a new slot Lj . When
applying our model into practice, the network operators are
free to use specific cost metrics they prefer in the migration
phase to set aij , such as the total migration time, the ser-
vice downtime or the migration traffic size, etc. Generally,
the migration cost aij can be easily obtained based on the
measured metrics in data centers by the SDN platform, e.g.,
the migration time and service downtime can be estimated
by the VM memory sizes, the allocated bandwidth and the
measured dirty page rates of the VMs [5]. Moreover, the
VM migration paths are all pre-specified based on the current
network topology, and the value of aij can be set as the product
of memory size and migration path length.

Therefore, the total network cost of the migration phase
from the placementA to a new placement B (named migration

1For a wired/wireless link, zij = 0 means no flow is allowed to route over
this link; and zij = 1 means flows can route over this link.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

3430 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

cost) can be computed as

CAB =
∑

Mi∈M

∑

Lj∈L
aijyij (6)

2) Communication Cost: To evaluate the communication
cost among VMs, the communication distance between
server i and j can be modeled with the routing hops between
them [6]. Then the cost of VM communication can be
described by the product of the traffic demand and communi-
cation distance.

For a flow fpq ∈ F , the communication distance is then
calculated as

∑
eij∈E xpq

ij . Hence we have the total cost of
VM communications (named communication cost):

TB =
∑

fpq∈F
{dpq

∑

eij∈E

xpq
ij } =

∑

fpq∈F

∑

eij∈E

dpqx
pq
ij (7)

F. Problem Formulation

The objective of our system is to minimize the sum of the
migration cost and communication cost during each scheduling
period. We use a weight parameter β to show the trade-off
between these two costs, which can be adjusted according to
the network operators’ preference on the two costs. Specially,
the model still applies if only one cost is considered by
setting β to zero or a large number. The controller input is n
VMs and each VM-level flow fpq ∈ F is attached with a
flow demand dpq . Therefore, we generate the following joint
optimization problem P0:

min CAB + β × TB
subject to

∑

vj∈L
yij = 1, ∀Mi ∈M (8)

∑

Mi∈M
yij ≤ 1, ∀Lj ∈ L (9)

xpq
ij ∈ {0, 1}, yij ∈ {0, 1} (10)

Constraints (1), (2), (3), (4), (5) (11)

where constraint (8)(9) are the VM placement constraints that
each VM must be hosted by only one slot while one slot
can host at most one VM. Constraint (1)(2) are the flow
conservation constraints. Constraint (3)(4)(5) are appended to
take into account the conflict constraints among configurable
links and link capacity. In the following, we use total cost to
denote the optimization objective, i.e., the sum of the migration
cost (CAB) and the weighted communication cost (β × TB).

By solving this optimization problem, the controller outputs
three sets of decisions: (1) the new VM placement B = {yij};
(2) the configurable links {zij} selected to build; (3) the
routing paths selected for VM-level flows {xpq

ij } under the
placement B. Since the general binary integer problem is
NP-hard [22], there are three sets of 0-1 integer variables
in the problem P0 to construct its difficulty. The first is
the unsplittable property of VMs indicated by yij ∈ {0, 1},
i.e., one VM can be migrated to only one slot. The second
is the unsplittable property of configurable links indicated by
zij ∈ {0, 1}, i.e., only one IS is selected to build. The third is
the unsplittable flow property indicated by xpq

ij ∈ {0, 1}, which
is required by the high performance of flows in DCNs [23].

By constructing an instance of problem P0 with no wireless
and VM migration, we generate the following theorem:

Theorem 1 (NP-Hardness): The joint optimization prob-
lem P0 is NP-hard.

Proof: See the detailed proof in Appendix A.

III. OFFLINE SCHEDULING DESIGN

A. Design Overview

Since the original problem P0 is NP-hard, the natural
question is: can we develop a polynomial-time algorithm to
solve it with proved approximation ratio? The key challenge
comes from the binary nature of the three sets of variables
(xpq

ij , yij , zij), which are coupled with each other. Specifi-
cally, the flow conservation constraint (1) closely couples
the flow variable xpq

ij to the placement variable yij while the
link capacity constraint (5) couples the flow variable xpq

ij to
the link variable zij . Conventional techniques using relax-
and-rounding have the potential to solve the binary integer
problems (BIP) with a single set of 0-1 variables, however,
they are not suitable for the joint BIP as P0. There are
several challenges to ensure the performance guarantee when
considering multiple sets of 0-1 variables. First, since the
three sets of binary variables have quite different properties
and constraints, a simple relaxation that equally relaxes each
binary variable to a linear variable in [0, 1] can not give the
performance guarantee during the relaxation. Second, since
the three sets of variables are closely coupled with each
other in the constraints, it is difficult to round all of them
directly without any conflicts on the constraints, not to mention
guaranteeing any approximation ratio.

To address the above challenges, we develop a novel
progressive-decomposition-rounding (PDR) algorithm to
solve P0. The overview of PDR is presented in Algorithm 1.
First, we develop techniques to relax the three sets
of 0-1 variables based on their different constraints so
that a constant approximation ratio is guaranteed during
the relaxation (Section III-B). Next, rather than rounding
the LP solution directly as a whole, we propose to decom-
pose and round the three sets of variables one by one
with the performance guarantee based on their specific
properties (Section III-C). Finally, we address the challenge
on combining the above progressive approximation results
together to achieve the complete approximation to the
original problem P0 (Section III-D). In the following, we will
introduce the technical details of each step in the PDR.

B. Relaxation of Integer Variables

In this section, we will show how to relax the 0-1 integer
variables in the problem P0. To begin with, we show the
motivation of our technique with a basic problem analysis.
In problem P0, we can see that the variable yij has its
individual constraints (8)(9) that define a valid VM placement,
and also a combined constraint (1) that is coupled with the
variable xpq

ij to ensure the flow conservation. Hence a simple
linear relaxation of variable yij to [0, 1] means that a VM is
allowed to be split and migrated to multiple slots. Based on
equation (1), this relaxation operation will drive the variable
xpq

ij to be relaxed in the same way, which means a flow
is allowed to be split over multiple routing paths. For xpq

ij ,
the main concern raised to this linear relaxation is that it is
coupled with the variable zij in the constraint (5) to ensure
that the flow routes over a valid link within its capacity. When
looking into the inequality (5), we can see that the expression
of xpq

ij is limited by an upper bound as zij . On the other hand,

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: TRAFFIC-AWARE VM MIGRATION IN TOPOLOGY-ADAPTIVE DCN 3431

Algorithm 1 PDR: Progressive-Decomposition-Rounding

1: Relax three sets of 0-1 variables: {xpq
ij }, {yij}, {zij}

2: Solve the relaxed LP problem to get the fractional solution
3: Decompose and round an VM placement
4: Solve the LP with fixed VM placement, then decompose

and round an IS
5: Solve the LP with fixed VM placement and fixed IS, then

decompose and round the routing paths

zij is characterized by its individual constraints (3)(4) to define
a valid wireless link setup. Hence, we can address the concern
of relaxation impact of xpq

ij in constraint (5) using the solution
space described by the constraints (3)(4) to be related to zij .

Following the above analysis, we first relax the 0-1 variables
xpq

ij and yij by the linear constraints xpq
ij ∈ [0, 1], yij ∈ [0, 1].

Constraints (3)(4) define the 0-1 variable zij as an IS. We use
the incidence vector to represent an IS, i.e., a vector whose
jth element is 1 if and only if the vertex vj is an element of
the IS. Let z denote the stacked vector of {zij}. Since each
incidence vector represents an integer point in the vector space
of z, all the incidence vectors of ISs in Gc denote an integer
point set P . Thus the constraints (3)(4)(5) can be equally trans-
lated as

∑
fpq∈F dpqx

pq
ij /bij ≤ zij and z ∈ P , i.e., in a sim-

plified way it can be written as {
∑

fpq∈F dpqx
pq
ij /bij} ∈ H,

where H denotes the polytope defined by constraints (3)(4)(5).
Intuitively, we can relax the point set P as an independence

set polytope P , i.e., the convex hull of all the integer points
in P . Hence we have H ⊆ P and the ideal relaxation
that {

∑
fpq∈F dpqx

pq
ij /bij} ∈ P . However, the polytope P is

generally not polynomial-representable for an arbitrary conflict
graph Gc. In the following, we will show that if we can
approximate P with another polynomial-representable poly-
tope S within a constant ratio μ, i.e., S ⊆ P ⊆ μS, then
we are able to obtain an μ-approximation relaxation of the
original problem P0.

Following the above relaxation procedures, the formulation
of the relaxed LP problem P̃0 can be abstracted as follows:

min O(X, Y)
subject to X ∈ S (12)

Y ∈ U (13)

W (X, Y) = 0 (14)

where X denotes the vector of variables {xpq
ij }, and Y denotes

the vector of variables {yij}. The polytope S denotes the
μ-approximation of polytope P that is described by original
constraints (3)(4)(5) with respect to xpq

ij . The polytope U is
defined by the original constraints (8)(9) and yij ∈ [0, 1] with
respect to yij . The original constraints (1)(2) are abstracted
by a linearly-weighted sum of vector X and Y as described
by W (X, Y), and the optimization objective is abstracted by
another linearly-weighted sum of vector X and Y as O(X, Y).

Theorem 2 (Relaxation Guarantee): The optimal solution
of the relaxed LP problem P̃0 is μ-approximation of the
optimal solution of the target original problem P0, i.e., λ̃0 ≤
μλ0 (μ ≥ 1), where λ̃0 is the optimal objective value of P̃0

and λ0 is the optimal objective value of P0.
Proof: Following the above abstraction principle, we

construct another problem P̃ ′
0 that formulated as below:

minimizing O(X, Y) and subject to X ∈ μS, Y ∈ μU and
W (X, Y) = 0. The optimal solution of P̃ ′

0 is denoted as
(X∗, Y ∗) with the objective value λ̃

′
0. First, we will show

that (μX∗, μY ∗) is a solution of P̃0. Comparing P̃0 and P̃ ′
0,

the polytope of X and Y in P̃ ′
0 is μ times that in P̃0. Since the

problem is the minimization problem, (μX∗, μY ∗) is in the
polytope of P̃0 with respect to X and Y . Further, the linear
constraint W (X, Y) = 0 is still satisfied when the vector
X and Y are all scaled with a constant factor μ. Hence
(μX∗, μY ∗) is a solution of P̃0. Finally, since P̃0 and P̃ ′

0 have
the same linearly-weighted objective that O(μX∗, μY ∗) =
μO(X∗, Y ∗), we have λ̃0 = μλ̃

′
0.

Let all the incidence vectors2 of the variables {yij}
denote an integer point set U , which is defined by the con-
straints (8)(9) and yij ∈ {0, 1}. Because U forms a matching
polytope of yij in the bipartite graph of mapping the VMs
to slots, the matching polytope U is exactly the convex hull
of all the integer points in U [24]. Then the original problem
P0 can be formulated as: minimizing O(X, Y) and subject to
X ∈ H, Y ∈ U and W (X, Y) = 0. Let Conv(P) denote the
convex hull of point set P , since H ⊆ Conv(P) = P ⊆ μS
and U ⊆ Conv(U) = U ⊆ μU (μ ≥ 1), we have that any
solution of problem P0 is the solution of problem P̃ ′

0. Then let
λ0 be the objective value of the optimal solution of problem
P0, we have λ̃

′
0 ≤ λ0. Therefore, we have λ̃0 = μλ̃

′
0 ≤ μλ0.

This completes the proof.
There is a group of research efforts on how to construct

the approximation polytope S [21], [25]. Here we adopt the
simple μ-approximation representation in [21] as S =

{
δ ∈

Rm
+ : maxeij∈E{δ(eij) +

∑
euv∈Ω(euv) δ(euv)} ≤ 1

}
, where

Ω(euv) denotes a specific set of links with respect to euv (see
more details in [21]), and δ(eij) =

∑
fpq∈F dpqx

pq
ij /bij . Based

on the definition of μ in [21], for a conventional data center
network with the physical layout and realistic wireless setting
in [16], the μ value is less than 20. In this way, the LP-relaxed
problem P̃0 is presented as follows:

min CAB + β × TB
subject to xpq

ij ∈ [0, 1], yij ∈ [0, 1] (15)

δ(eij) +
∑

euv∈Ω(eij)

δ(euv) ≤ 1, ∀eij ∈ E (16)

Constraints (1), (2), (8), (9) (17)

where constraint (15) is the relaxtion of 0-1 variables yij and
xpq

ij , and constraint (16) is the relaxtion of IS selection.

C. Decomposition and Rounding

After getting the optimal fractional solution of P̃0, we will
decompose and round the solution to 0-1 integer one by one.
Despite that introducing configurable links into the data center
will provide more flexibility for the network construction,
there is a challenge to achieve higher performance taking full
advantage of the flexibility. Specifically, it is important to find
a right order for the decomposing-and-rounding. As migrating
VM will introduce extra cost and reduce the flow performance,
we would like to migrate as few VMs as possible, and flexibly

2The constraints (8)(9) and yij ∈ {0, 1} define {yij} as an IS, where two
variables yij and ypq have a conflict if the constraints (8)(9) are not satisfied.
Thus we can use the incidence vector to represent an IS of {yij}.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

3432 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

configure the links for data transmissions. Therefore, we will
build transmission links after confirming the VM placement.

First, we will decompose and round the fractional
VM placement. The main challenge is how to characterize the
VM placement efficiently for approximation. The motivation
of our technique is modeling a valid VM placement as a
constraint bipartite graph. After getting the optimal fractional
placement Y = {yij : yij ∈ [0, 1]} by solving P̃0, we use the
CCD algorithm (Algorithm 2) to perform its convex combi-
nation decomposition3 as follows. Considering an VM or slot
as a vertex and the matchings as edges, we can model the
one-to-one matching from the VM set to slot set as a bipartite
graph Gb. The conflict relationship among the matching edges
is defined by constraints (8)(9), and thus we can construct
the corresponding conflict graph Ĝb, in which each matching
edge that places one VM to one slot is taken as a vertex, and
there is an edge between two vertices in Ĝb if they have a
conflict. An IS in Ĝb exactly denotes an one-to-one matching
from VMs to slots, i.e., an VM placement. By calling CCD
algorithm with Ĝb and Y as the input conflict graph and
weight vector respectively, we can obtain the output of several
VM placements {Ii} with corresponding weights {wi}.

As Algorithm 2 shows, CCD greedily selects an IS and
sets its weight as the minimum weight of links in the IS
(line 3-7). Then the link weights are updated and the links
with the zero weight is removed (line 9-10). The procedure
repeats until no link is left to select. Since the weight
of IS is the minimum weight of links in the IS, there is at
least one link to be removed from the set Φ at each repetition.
Hence the CCD at most performs m loops and the total time
complexity is O(m2), where m is the number of network
links.

Algorithm 2 CCD: Convex Combination Decomposition

Input: A conflict graph Gc(Vc, Ec) and a vertex vector
{x(v) : v ∈ Vc} where x(v) ∈ [0, 1]

Output : The decomposed ISs {I} with weights {w}
1: Γ← ∅, Φ← {v ∈ Vc : x(v) > 0}
2: while Φ 	= ∅ do
3: I ← ∅
4: for v ∈ Φ do
5: if v does not conflict with nodes in I add v to I
6: end for
7: w ← minv∈Ix(v), and add (I, w) to Γ
8: for v ∈ I do
9: x(v)← x(v) − w
10: if x(v) = 0, remove v from Φ
11: end for
12: end while

If the vertex v is selected in Φ with a specific order for line 4
in Algorithm 2, the CCD solves the conventional fractional
coloring problem with a total weight

∑
i wi ≤ 1 [21]. Finally,

we select one VM placement Ii with a probability as its

3There are many other ways to do the convex combination decomposition
of a fractional solution in polynomial time, e.g., the well-known method of
solving a linear programming problem in [26]. Here we present an easier
one.

corresponding weight wi to be the output,4 which we refer
to as the rounding step.

An algorithm is defined to be ρ-relaxed if it can achieve
a solution within ρ (ρ≥1) times the optimal solution of
the LP relaxation of the integer programming problem.
In the following, we show that the above decompose-and-
rounding procedure for VM placement selection is a ρ-relaxed
algorithm.

First, we illustrate the feasibility of transforming the decom-
position of fractional placement to that of its objective value
of problem P̃0. This is non-trivial to achieve because the
placement variable yij is coupled with another two sets of
variables in the constraints, i.e., the routing variable xpq

ij and
link variable zij . Since P̃0 can be solved as a LP problem
when given an arbitrary VM placement as its input, we denote
the optimal objective value of P̃0 as Ô(M) with an input
placement M . Then we have:

Lemma 1 (Decomposition Feasibility): Let Mf denote the
optimal fractional placement by solving P̃0, where Mf can
be decomposed as Mf =

∑
i wiMi. We have that: (a) the

integer placement Mi with the same flow routing paths but
1/wi times flow demands that in Mf is a feasible solution
of problem P̃0 (denote the corresponding objective value as

Ô′(Mi)); (b) Ô(Mf) =
∑

i wiÔ
′(Mi).

Proof: See the detailed proof in Appendix B.
Based on the above Lemma, suppose there are totally

n nodes in the network, we can generate the following theorem
for rounding the decomposed placements:

Theorem 3 (Placement Rounding Guarantee): Assume the
optimal objective value of P̃0 is λ̃0. The output objective value
is denoted as λ∗

1 after rounding the VM placement in P̃0 by
the CCD algorithm. Then we have λ∗

1 ≤ ρ1λ̃0 with a high
probability, where ρ1 is O(log n

log log n).
Proof: See the detailed proof in Appendix C.

Next, we fix the VM placement in P0 and solve the remain-
ing LP problem. Then we decompose and round the fractional
wireless solution {xpq

ij } to one integer IS. Again, we apply the
CCD algorithm to perform the convex combination decom-
position, with the wireless conflict graph Gc (Section II-D)
and the demand-bandwidth ratio x(eij) =

∑
fpq∈F dpqx

pq
ij /bij

as the input respectively. Then we select one IS with a
probability of its corresponding weight. Now we show that the
above decompose-and-rounding procedure for IS selection is a
ρ2-relaxed algorithm:

Theorem 4 (IS Rounding Guarantee): Assume the optimal
objective value of the LP problem P̃2 generalized by fixing the
VM placement in P̃0 is denoted as λ̃2. The output objective
value after rounding the fractional IS in P̃2 is denoted as λ∗

2.
Then we have λ∗

2 ≤ ρ2λ̃2 with a high probability, where ρ2

is O(log n
log log n).

Proof: See the detailed proof in Appendix D.
Finally, we fix the VM placement and selected IS and

solve the remaining LP problem. We then decompose and
round the fractional flows to the single-path integer flows.
We apply the path stripping method in [27] to decompose the
fractional flow {xpq

ij } to multiple routing paths. The output is
the path sets where each routing path is attached with a weight.
Similarly, the rounding algorithm for path choice using the

4If
�

i wi < 1, we add an empty placement with the weight 1−�i wi to

ensure
�

i wi = 1. If the empty placement is selected, no migration happens.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: TRAFFIC-AWARE VM MIGRATION IN TOPOLOGY-ADAPTIVE DCN 3433

path weight as the probability is a ρ3-relaxed algorithm and ρ3

is O(log n
log log n).

D. Combination of PDR

In this section, we will show how to combine all the
approximation ratios that obtained above by PDR together,
as one final approximation ratio to the original problem
P0. We first give the lemma of the combination rule as
below:

Lemma 2 (Combination Guarantee): Suppose there exists
a ρ1-relaxed, ρ2-relaxed, ρ3-relaxed algorithm for the three
rounding steps respectively. Then there exists a (ρ1ρ2ρ3)-
approximation algorithm for P̃0.

Proof: We construct the approximation algorithm for P0

as follows. First, by rounding the VM placement from P̃0,
we have the problem P1. We use the ρ1-relaxed algorithm
to solve P1. Denote the output as VM placement {y∗} and
the output objective as λ∗

1. Since λ̃0 denote the optimal
objective value of P̃0, we have λ∗

1 ≤ ρ1λ̃0. By setting the
VM placement in P1 as {y∗}, we have the LP problem P̃2.
Let λ̃2 as the optimal solution of P̃2, then we have
λ̃2 ≤ λ∗

1.
Second, by rounding the IS from P̃2, we have the

problem P2. We use the ρ2-relaxed algorithm to solve P2.
The output IS and objective are respectively denoted as {e∗ij}
and λ∗

2. Hence we have λ∗
2 ≤ ρ2λ̃2. By setting the IS in P2

as {e∗ij}, we have the LP problem P̃3. Let λ̃3 as the optimal
solution of P̃3, then we have λ̃3 ≤ λ∗

2.
Third, by rounding the splittable flow path, we have the

problem P3. We use the ρ3-relaxed algorithm to solve P3.
Hence we have λ∗

3 ≤ ρ3λ̃3. Therefore, λ∗
3 ≤ ρ3λ̃3 ≤ ρ3λ

∗
2 ≤

ρ3ρ2λ̃2 ≤ ρ3ρ2λ
∗
1 ≤ ρ3ρ2ρ1λ̃0. This completes the proof.

Therefore, we finally generate the following theorem to give
the approximation ratio of PDR to the problem P0:

Theorem 5: Algorithm 1 gives an approximation ratio of
O(μ (log n

log log n)3) for problem P0 with a high probability.
Proof: Let λ∗

3 denote the output objective value of
P0 after executing Algorithm 1 and λ0 denote the optimal
objective value of P0. Our goal is to prove that λ∗

3 ≤
O(μ (log n

log log n)3)λ0.

According to Theorem 2, we have λ̃0 ≤ μλ0. With lemma 2,
we have λ∗

3 ≤ ρ3ρ2ρ1λ̃0. Hence we have λ∗
3 ≤ μρ3ρ2ρ1λ0 =

O(μ (log n
log log n)3)λ0. This completes the proof.

With three LPs solved in Algorithm 1, its time complexity
is polynomial. The VM traffic measurements in real DCNs [6]
report that the traffic demands for a large proportion of VMs
are relatively stable at large time intervals of several hours.
This demonstrates the feasibility of applying our algorithm to
achieving a long-term performance benefit on VM communi-
cation with infrequent LP solving and topology changes. The
VM traffic stability in large time intervals and the polynomial-
time complexity of Algorithm 1 allow its good scalability
along with the performance guarantee, which avoids the chal-
lenge of solving the original integer programming problem at
the unscalable exponential time complexity. Recent advances
in robust distributed LP solving [28] further show the potential
of taking full advantage of the rich distributed computation
power in DCNs to run our algorithm efficiently with increasing
network scales.

IV. ONLINE SCHEDULING DESIGN

A. Design Overview

In the previous section, we present PDR to make three
challenging decisions for VM migration. However, in order
to ensure the performance guarantee, it is relatively time-
consuming to solve three LP problems for a large-scale data
center network. PDR is better fit for the data centers with long
lasting traffic, where the operator can run PDR based on the
prediction of flows according to their traffic patterns. As data
centers also have many irregular and dynamic flows that cannot
be easily predicted, we would like to answer the following key
question: Can we design an online algorithm that can provide
migration decisions right after receiving a new flow demand?
The large number of configurable links in the topology-
adaptive DCN will lead to an exponential number of topology
candidates, which makes it challenging to determine a traffic-
aware topology online. Moreover, recent traffic measurements
show that the high dynamics in DCN flows make the short-
period traffic prediction very challenging [29].

Therefore, we will design an online algorithm that can
handle each newly arriving flow in real time. A new flow
may trigger the VM migration to achieve a lower total cost.
However, the cost would be prohibitive if thousands of flows
need VM migration. In addition, each VM migration will
affect on-going flows and rescheduling of flows will introduce
additional cost. To achieve a lower total cost while guarantee-
ing the network stability, we will evaluate the effect caused by
each newly arriving flow and migrate VMs based on Lyapunov
control theory.

B. Migration Request Generator

To address the above challenges and avoid frequent
VM migrations, we develop an online decision-maker (ODM)
to schedule VMs in real-time without traffic prediction. The
Lyapunov control theory has been introduced in recent work
to give non-prediction-based online scheduling solutions [30].
However, the Lyapunov theory is normally applied in queuing
scenarios [31], while our VM migration problem has no
natural queuing property. In order to trade off between the
VM migration cost and communication cost under the Lya-
punov optimization framework, we propose to keep generating
proper migration requests with reduced communication cost
and maintain them in a queue. This is performed by a module
named migration request generator (MRG). Next, to effectively
control the migration cost, we design a migration request
scheduler (MRS) to schedule the VM migration based on the
requests generated by the MRG module. In the following,
we will introduce the detailed design of MRG and MRS
modules, respectively.

The MRG module is applied to generate migration requests
to reduce the communication cost between VMs. To shorten
the communication path for each pending VM flow, we search
available slots in the intermediate zone between the source
VM and the destination VM. Taking Fig. 2a as an example,
suppose that there comes a flow from A to B, and the current
path length between A and B is L hops. Then we restrict
the search space to be within L hops, as determined by
two circles (i.e., CA and CB) in the figure. As migrating A
(or B) just based on the communication requirement of the
new coming flow may influence the on-going flows starting
from or destining for A (or B) and introduce additional total
cost, when we search each available slot in the overlapping

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

3434 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 2. Example of online decision-maker. (a) Migration request generator.
(b) Migration request scheduler.

region of CA and CB , we take into account on-going flows
and generate a new placement with a lower total cost. In other
words, each generated VM migration request will reduce the
total cost of the flows related to the migrated slots. As Fig. 2a
shows, we find C in the overlapping region, and generate a
request that migrates A to C to achieve a lower total cost
in a global view. After the migration, all flows that start
from or destine for A will reach C, and A will be recycled
to the set of available slots to serve the future flows. After
that, we pick wireless links from the available wireless link
set and build them between C and B to further reduce the
communication cost.

C. Migration Request Scheduler

To schedule the migration requests generated by MRG,
we push these requests into a queue and denote it by Q.
At each time slot, we have two options to handle each request
in Q: processing it or skipping it. We design a migration
request scheduler named MRS to make the final decision. For
example, in Fig. 2b, there are five migration requests queued
in Q. For each request, there are corresponding migration cost
and communication cost that can be used to make migration
decision, denoted by b and P . After we have identified the
last request r3 that could satisfy the migration constraints,
we process all the requests in Q that are not queued after r3.

Processing any request q in Q at time t will generate a
migration cost (as shown in Section II-E) and we denote
it by q(t). For the i-th request, the migration cost is qi(t).
Suppose there are N requests in Q at time t, then the total
migration cost (i.e., the queue backlogs) can be computed as:

Q(t) �
∑N

i=1
qi(t). (18)

At each time slot, there are requests arriving at and leaving
from Q. Suppose that MRG generates M requests at time t,
we denote a(t) as the total migration cost of the new requests
coming at time t, and b(t) as the total cost of requests
processed at time t. Let a binary number x(t) denote each
request’s status, where x(t) = 0 means skip it and x(t) = 1
means process it at time t. Then we have:

a(t) =
∑M

i=1
qi(t) (19)

b(t) =
∑N

i=1
qi(t) · xi(t) (20)

Q(t + 1) = max[Q(t) + a(t)− b(t), 0] (21)

Following the Lyapunov framework in [30] and [32], our
Lyapunov function is defined as:

L(t) � 1
2
Q(t)2 (22)

Then the one-step Lyapunov drift can be computed as:

ΔL(t) = E[L(t + 1)− L(t)|Q(t)] (23)

By combining the equations (19)-(23), we have:

ΔL(t) ≤ B(t)−Q(t)E[b(t)|Q(t)] + Q(t) · a(t) (24)

where B(t) � 1
2 (E[a(t)2] + E[b(t)2|Q(t)]).

Since the optimization objective is to minimize the total
cost of VMs, we consider both of the migration cost and
communication cost simultaneously in ODM. In order to
minimize the communication cost at time t through VM migra-
tion, we define the communication cost as the penalty func-
tion, denoted by T (t). Let the communication cost for the
i-th request denoted as ci, then we have:

T (t) �
∑K

i=1
ci (25)

where K is the request number to be processed. We add
weighed T (t) into the Lyapunov drift (V is the weight), and
get the following drift-plus-penalty expression:

ΔL(t) + V · E[T (t)|Q(t)]. (26)

Based on the constraint (24) and expression (26), we have
the following lemma:

Lemma 3: Suppose the arrive rate a(t) and process rate
b(t) are bounded by A and B, i.e., a(t) ≤ A and b(t) ≤ B,
and a(t) is i.i.d over time t, the following property holds:

ΔL(t) + V · E[T (t)|Q(t)] ≤ B

−E{Q(t) · E[b(t)|Q(t)]− V · T (t)|Q(t)} + Q(t) ·A (27)

where B ≤ 1
2 (A2 + B

2).
By applying the dynamics of queue (21) into the Lyapunov

drift (23), we can obtain the fact of (27). According to
Lyapunov optimization, the optimal migration should take the
drift-plus-penalty (as shown in (26)) minimization as an objec-
tive. Thus the original problem transforms to minimize the
right-hand side of (27), and we get the following optimization
objective:

max O(t) � Q(t) · b(t)− V · T (t) (28)

Based on (28), we have the following theorem:
Theorem 6 (The Boundness of ODM): Suppose the arrival

rate a(t) is strictly bounded by network capacity region, and
the online scheduling decision in (28) is made at each time
slot. For any weight V > 0, the time-average communication
cost T ∞ and time-average migration cost Q∞ satisfy that:

T ∞ = lim
T→∞

sup
1
T

∑T−1

t=0
E[T (t)] ≤ Ω +

B

V
(29)

Q∞ = lim
T→∞

sup
1
T

∑T−1

t=0
E[Q(t)] ≤ B + V · Ω

ε
(30)

where B and ε are positive constants. Ω is the theoretical
optimal time-average communication cost.

Proof: See the detailed proof in Appendix E.
Based on (28), we design a migration request scheduler,

named online decision maker (ODM), to make the migration
decision and process migration requests online. We present
the details of ODM in Algorithm 3. We first run MRG to
generate migration requests and updates Q based on (21) on
line 1. Then we calculate the migration cost (i.e., the queue
backlog) of Q at time t by (18), denoted by Q(t), and initiate
a cursor (line 2 and 3). The cursor is used to indicate the last
request to be processed. On lines 4-9, we update cursor based
on the objective value of (28). The V in (28) is decided by data
center operators according to the real traffic pattern. We will

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: TRAFFIC-AWARE VM MIGRATION IN TOPOLOGY-ADAPTIVE DCN 3435

Algorithm 3 ODM: Online Decision-Maker
1: Run MRG and update Q by (21)
2: Calculate Q(t) by (18)
3: cursor ← 0
4: for i from 1 to |Q| do
5: Calculate bi(t), Pi(t), Oi(t) by (20), (25), (28)
6: if Oi(t) > 0 then
7: Update cursor by i
8: end if
9: end for

10: Process the first cursor requests in Q and calculate Q(t)

evaluate the flow performance under different V settings
in Section V-B. After that, we process requests according to
cursor and update Q(t) (line 10). The total time complexity
of ODM is O(|Q|), where |Q| means the migration request
number in Q. If the current migration request number in Q is
greater than a pre-set threshold, we will empty the Q and
restart scheduling. This is because a heavy queue backlog in
Q means a long decision time. In the later section V-B, we will
show that the flow performance degrades when the number of
requests in queue becomes too large.

V. EVALUATION

In this section, we present the evaluation of our solutions
against other state-of-art VM migration algorithms through
simulations and also validate the performance gains of our
solutions through testbed experiments.

A. Simulation Setup

For simulations, we use the public traffic trace from two
university data centers provided by [29]. We implement a
flow-level simulator using the TCP setting in [33]. We use
a 3-layer fat-tree [34] with 8-port switches as the simulated
network topology. To embed realistic wireless settings, we use
the 60GHz rectangular waveguide hardware of AINFO Inc¡¯s
horn antenna to build our 60GHz wireless antenna pairs for
testing the wireless parameters. The measured 60GHz wireless
bandwidth at 10 meters is 2.5Gbps and the interference angle
of the antenna is 20◦. The Rayleigh fading model is applied
to simulate the wireless channel dynamics. The physical
placement of racks (one wireless radio per rack) follows the
previous work [16], i.e., using 24x48 inch rack, 6 feet between
two cluster rows and 10 feet between two cluster columns.
During the simulations, we select 100 flows from each trace
file (there are totally 29 trace files and each file contains
about 1 million flow entries in ten minutes) and assigned their
sources and destinations to different VMs randomly.

We first compare the flow performance of the proposed
PDR and ODM algorithms. PDR is an LP-based offline
solution while ODM schedules VM migration requests in
real-time. Furthermore, we evaluate the running time of PDR
and ODM by conducting simulations under different traffic
settings and network scales. The related configurations are
listed in Table III.

We study the performance of our PDR algorithm on three
aspects: the VM placement, the adaptive topology and the
routing strategy. The details of compared strategies are pre-
sented in Table II. There are two typical types of algorithm
design for VM placement in the literature: (1) the greedy

TABLE II

ALGORITHM COMPARISON ON DIFFERENT ASPECTS

TABLE III

RUNTIME COMPARISON OF PDR AND ODM

placement that places each VM to a slot to minimize the
increment of the current objective cost [10], [35]; (2) the
clustering-and-matching strategy that groups VMs and slots
into several VM clusters (based on the traffic demand) and
slot clusters (based on the communication distance), and then
matches the clusters one by one [6], [20]. To compare with
our algorithm, without loss of generality, we use the greedy-
fill algorithm (named Greedy) in [35] and the clustering-and-
matching (named Cluster) algorithm in [20] to represent the
above two typical types of placement algorithms. We utilize
the random placement (named Random) that randomly maps
the VMs to slots to serve as the baseline for VM placement.

For the wireless setup, we compare our wireless solution
with the greedy scheme (named Flyway) proposed in [17],
which builds wireless links between close-by racks that have
high capacity. For the routing strategy, we use the most popular
DCN routing scheme ECMP (Equal-Cost Multi-Path) [36]
to serve as the baseline strategy. For all the comparisons,
we equally scale up the flow traffic size of the flow traces
to simulate the changes of network loads.

To compare the flow performance of ODM and existing
VM migration solutions, we combine VM placement, adaptive
topology construction and flow routing together. We com-
pare ODM with Cluster, Greedy and Random on the flow
transmission performance. For existing VM placement strate-
gies, we build wireless links by Flyway, and route flows by
ECMP. To make a fair comparison, we apply ECMP as the
routing strategy in ODM. We evaluate these solutions under
the hotspot traffic pattern, which is common in data center
networks [14], [37].

We evaluate the performance of ODM by adjusting the
weight parameter V in (28) and the flow arrival rates.
By adjusting the trade-off parameter V , data center operators
could easily control the VM migration frequency. A large
weight represents a strict migration constraint, which means
VM migration will occur occasionally. Otherwise, more
migration requests will be satisfied in the time slot they are
generated.

B. Simulation Results

1) Comparison of PDR, ODM and Random: We evaluate
the flow completion time, throughput and total cost of PDR,
ODM and the baseline algorithm, Random. Fig. 3a shows the
distribution of flow completion time. We can see that the flow
completion time of PDR is 77.6% and 30% that of ODM

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

3436 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 3. Flow performance of PDR and ODM. (a) Flow completion time.
(b) Flow throughput. (c) Total cost on VM migration and communication.
(d) Runtime of ODM.

Fig. 4. Performance over different trade-off weights. (a) Migration phase.
(b) Communication phase.

and Random on average. In Fig. 3b, the flow throughput
of PDR is 38.2% and 111% higher than that of ODM and
Random on average. Both PDR and ODM perform much better
than Random in terms of the flow performance. In Fig. 3c,
we present the total cost (the sum of the migration cost and the
weighted communication cost) of PDR, ODM and Random.
We can find that, the total cost of PDR and ODM are 42.1%
and 16.1% lower than that of Random, respectively. This is
because PDR schedules VM migration with the information
about future traffic, while ODM makes decisions in real-time
without any prediction. Therefore, if the traffic in a data center
is predictable in a long period (e.g., the periodic traffic [17]),
PDR is a better choice for data center operators.

To evaluate the algorithm running time of PDR and ODM,
we run them on a desktop with a 2-core Intel i3-3220 3.3GHz
CPU, 16GB memory and a 1TB hard disk under different
network settings. We list the network configuration and algo-
rithm runtime in Table III. As the server number or flow
number increases, the running time of PDR increases fast,
while the time of ODM changes slightly (less than 1ms), and
is stable within 1ms. Limited by the running time of PDR,
we compare PDR and ODM in a small-scale data center with
100 flows. In Fig. 3d, we also evaluate the running time of
ODM when the flow number (FN) equals 5000 or 10000.
We can see that, the time of ODM increases with the network
scale and flow number, but the running time is kept within
several milliseconds. This indicates that ODM can be better
used for real-time VM scheduling when the traffic is highly
random and dynamic.

2) Trade-Off Performance: As Fig. 4 shows, we evaluate
the migration and communication performance by changing
the trade-off weight β between the two costs. To evaluate
the wireless effects, we compare two versions of PDR: the
normal PDR (PDR-Hybrid), and the restricted PDR using only
the wired links (PDR-Wired). In Fig. 4a, we can see that the
migration cost for both cases is almost zero when β is smaller
than 0.1, but increases when β becomes larger. This is because

Fig. 5. Performance of different VM placement strategies. (a) Average flow
completion time. (b) Average flow throughput. (c) Total cost on VM migration
and communication. (d) CDF of flow completion time.

when the weighted communication cost is too small compared
to the migration cost, PDR would ignore the objective of
minimizing communication cost. When β is larger than 0.1,
the cost of the PDR-Wired increases quickly to a large value,
which is more than 1.5 times that of the PDR-Hybrid. The
migration cost of PDR-Hybrid, on the other hand, increases
very slowly with the weight parameter. The wireless links are
utilized by PDR to construct a proper topology to reduce the
migration cost, which at the same time, achieves the smaller
flow completion time in the communication phase as Fig. 4(b)
shows. Since the communication performance is similar for
PDR with different weights, without loss of generality, we use
β = 0.1 as the default weight value of PDR in the following.

3) Performance of VM Placement: In Fig. 5, we evaluate
different VM placement solutions. We compare PDR and
ODM with existing placement strategies, respectively. In the
comparison between PDR and existing solutions, to make a
fair comparison, all the compared solutions use exactly the
same wireless setup as PDR, and also compute their routing
paths by solving the remaining flow routing LP problem as
that done by PDR. In Fig. 5a and Fig. 5b, the PDR achieves
the lowest completion time and the highest throughput for all
the network loads, while its performance gain compared to
others becomes larger with a higher load. This demonstrates
that the placement of PDR works the best with the underlying
adaptive topology to handle the congested flows. For both
figures, the Random solution performs the worst as it is not
aware of any resource usage. The Cluster and Greedy perform
very similarly when the network load is light, while the Cluster
outperforms Greedy when the load turns heavy. This indicates
that the greedy placement algorithm works more effectively in
a non-congested network.

The Fig. 5c and Fig. 5d show the detailed performance of
PDR and four existing solutions. In Fig. 5c, we can see that
the total migration costs of Cluster, Greedy and Random are
similar, which is about 4 times that of PDR. At the same
time, the communication cost of all the solutions are similar
while the communication cost of Cluster is a little smaller
than that of PDR. This is because the Cluster optimizes the
communication cost only without the consideration of the
migration cost, while the PDR sacrifices some communication
cost to gain a much lower migration cost. As Fig. 5d shows,
the maximum flow completion time of PDR is about 20% less
than that of others. This should be attributed to the topology-
aware VM placement in PDR, while other placements fail to
exploit the adaptive topology.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: TRAFFIC-AWARE VM MIGRATION IN TOPOLOGY-ADAPTIVE DCN 3437

Fig. 6. Flow performance of different wireless setup and routing.
(a) Average flow completion time. (b) Average flow throughput. (c) CDF
of flow completion time. (d) CDF of flow throughput.

4) Performance of Wireless Setup and Routing: In Fig. 6,
we evaluate two wireless setups (PDR and Flyway) and two
routing strategies (PDR and ECMP) together. For example,
we denote the solution using the wireless setup of PDR and the
ECMP routing as PDR+ECMP. To make a fair comparison, all
the solutions use the same VM placement as PDR. In Fig. 6a
and Fig. 6b, we can see that PDR performs the best on both
the flow completion time and throughput over various network
loads, with its concurrent consideration of the placement
and routing in forming the topology. The Flyway solution,
however, adapts the topology based on the placement only,
without considering the flow routing paths. This difference
in wireless setup brings PDR a 25% higher throughput than
Flyway when the network load is high.

Another interesting finding is that PDR+ECMP outper-
forms Flyway+ECMP on both the flow completion time and
throughput. It indicates that even though using the same ECMP
routing, the topology built by the PDR cooperates better
with the VM placement than the topology built by a greedy
algorithm. This difference in adapting the topology brings
PDR+ECMP a 28% throughput improvement compared to
Flyway+ECMP. The flow details in Fig. 6c and Fig. 6d show
that the maximum completion time of 90% flows in PDR is
about 30% less than that of other solutions. Moreover, in PDR
there are only 20% slow flows that have throughputs less than
25MBps, while there are at least 40% such flows in the others.

5) Comparison of ODM and Existing Solutions: In Fig.7,
we compare ODM and existing solutions when there exits
different percentage of hot nodes. We consider the hotspot
model in [38], where in addition to the basic simulation setup,
a subset of VMs have higher flow arrival rates and larger flow
sizes. We conduct evaluations under different hotspot traffic
patterns, the number in X-axis means the percentage of hot
nodes, the size of flow from hot nodes is about 10x that of
normal flows.

As Fig. 7a shows, with the increase of hot nodes, the flow
completion time of ODM increases much slower than other
three solutions. When there are 30% hot nodes, the flow
completion time of ODM is just a quarter that of Random,
and about 30% that of Cluster and Greedy. The throughput
performance in Fig. 7b shows a similar trend. When the
fraction of hot node increases from 0% to 30%, the throughput
of ODM declines slightly (<10%), while it declines sharply
(about 50%) for other solutions. We can see that, bene-
fited from the migration decisions derived from Lyapunov

Fig. 7. Performance of ODM and existing solutions. (a) Flow completion
time. (b) Flow throughput.

Fig. 8. Flow performance of ODM. (a) CDF of flow completion time.
(b) CDF of flow throughput. (c) Average flow throughput. (d) Request number.

optimization, ODM can handles hotspots much better than
other existing solutions.

6) Performance of ODM: As Fig. 8 shows, we evaluate the
flow performance of ODM under different traffic and para-
meter settings. The trade-off parameter V is used to balance
the migration cost and communication cost. In our problem,
it also controls the VM migration frequency. The parameter
R represents flow arrival rate. First, we find that the trade-off
parameter V should not be set too large. As Fig. 8a shows,
when V becomes large, the flow completion time increases
about 50% on average. In Fig. 8b and Fig. 8c, we can see the
downtrend of throughput with the increase of V . When we fix
the flow arrival rate, increasing V decreases the throughput,
but the drop speed slows down gradually. On the other hand,
we can see that a smaller V will bring higher migration cost.
Fig. 8d shows the relationship between migration frequency
and network settings. When V is set as 103, VM migration
occurs in each time slot, while a larger V reduces the migration
frequency thus the migration cost. Due to the balance effect
of V , when optimizing the flow transmission performance
using ODM, data center operators can adopt a proper V to
control the VM migration cost based on their requirements.

C. Experiment Results

In this section, we present a hardware testbed to validate
the performance gains of our solutions, PDR and ODM. Our
testbed consists of three hosts with the 4-core Intel Xeon CPU
and 8GB RAM. Two hosts (called client) are used for the
virtualization of the hosts and switches, while the left host
is running as the SDN controller implemented by Floodlight
v1.1 [39]. We use VirtualBox v4.1.12 [40] to implement the vir-
tual servers and use OpenvSwitch v1.4.6 [41] to implement the
virtual switches. The clients send flow statistics to the
controller and also receive the commands from it to deploy
the routing entries at the virtual switches. We build a par-
tial 3-layer fat-tree topology using 4-port virtual switches
(see Fig. 9).

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

3438 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 9. Topology of testbed.

Fig. 10. Analysis of flows.

Since current OpenvSwitch does not support wireless trans-
mission, we use wired link to simulate the wireless link and
set the wireless rate based on the transmission distance and
the Rayleigh-fading effect following our measurements using
60GHz wireless antennas introduced in the simulation setup.
Since our algorithm only builds the non-interfered wireless
links, this approximation is acceptable as the bandwidth
changes due to interference can be ignored. In the experi-
ment, we find that the OpenvSwitch can only achieve full
transmission rate up to 100MBps. Without loss of generality,
we equally scale down the bandwidth setting of wired links
and wireless links to tens of MBps in our testbed based on
the link bandwidths in a DCN [16]. For each round of exper-
iment, we randomly derive four flows from a different trace
file (totally six files from Trace1 to Trace6) which contains
about one million flow entries. We list the characteristics of
flows in each round of experiment in Fig. 10, including the
average arrival rate (Ave. R), the standard deviation of arrival
rate (Std. R), the average flow size (Ave. S), the standard
deviation of flow size (Std. S). We also indicate if a flow
contains the traffic burst, “YES” if there exists a burst and
“NO” otherwise. In our experiments, the VM size to migrate
is set as 100MBytes. The controller records the flow rates and
completion time, and we also monitor the average packet delay
on the clients. We will present the experiment results under
different flow characteristics in the following.

We first compare the total cost of different algorithms
in Fig. 11a. Among all the five algorithms, PDR achieves
the lowest total cost, which is consistent with the simulation
results. Although the total cost of ODM is higher than PDR,
it is lower than other three algorithms (Random, Greedy
and Cluster) in our experiments. As Fig. 11b shows, for all
the traces, the flows in PDR have an average packet delay
lower than that of Random, Greedy, Cluster and ODM, and
the difference are about 48.5%, 34.1%, 27.7% and 15.2%
on average. PDR generates a better VM placement that can
cooperate well with the adapted topology to cut short the
routing paths, which helps avoid going through the congestion
nodes and thus reduce the communication delay. The Random
solution, however, generalizes a random VM placement
which pays a high cost on the communication. We present the
detailed VM and flow performance in Fig. 11c and Fig. 11d.
In Fig. 11c, we can see that the total migration time, which
is consist of the downtime (tens of milliseconds) and the
migration time (several seconds) [4]. The migration time of
ODM and PDR is smaller than that of other three algorithms.
Compared with Random, ODM and PDR reduce the total
migration time by 62.7% and 53.5% on average. Taking the
migration cost into account, ODM and PDR schedule VMs

Fig. 11. Flow performance in the testbed. (a) Total cost on VM migration
and communication. (b) Packet delay. (c) Total migration time. (d) Flow
completion time.

based on traffic requirements and overall cost. They migrate
fewer VMs than Random in general. In Fig. 11d, the flows in
ODM and PDR achieve a smaller completion time compared to
other algorithms in most cases. Compared with Random, ODM
and PDR reduce the flow completion time by about 26.9%
and 30.4% on average. From the above, the experimental
results demonstrate the effectiveness of our solutions to
ensure the high performance of all the flows in a real testbed.

VI. DEPLOYMENT DISCUSSION

A. Solution Selection

To optimize VM migration in topology-adaptive DCN,
we have proposed two different solutions, PDR and ODM.
Despite that PDR outperforms ODM in general flow per-
formance, it requires the traffic prediction. It could fit the
data centers that have a clear traffic pattern, e.g., the periodic
pattern [17]. Compared with PDR, ODM performs better on
algorithm running time. It generates and schedules VM migra-
tion requests in real-time without any prediction for future
flows. In practice, data center operators can select one of the
above solutions according to their needs.

B. Application of OCSs and FSOs

We show how to extend our model to the case of using
OCSs [13], [19] or FSOs [11], [14] in DCNs. The OCS
changes the topology by solving a bipartite matching from
its input ports to the output ports [19]. In this way, the OCS
links are built with respect to the bipartite matching polytope,
which is known to have an exact relaxation as its convex
hull [24]. Therefore, the PDR solves it with an approximation
ratio improved by a constant μ compared to the wireless
mechanism. The FSO is a special case of wireless radio that
has little interference footprint, but has a link conflict that each
FSO port can build at most one link [14]. Hence it can also
be modeled as the independent set and the PDR solves it with
the same approximation ratio.

C. Application of SINR Model

We show that although we use an binary interference model
for a general optimization purpose of the topology-adaptive
DCN, our solution can also be easily extended to solve the
SINR interference model. Actually, the work in [25] proves
that the inductive independence number μ is bounded by
log(n) for the edge-weighted conflict graph described by the
SINR interference model, where our PDR solution solves it
with an approximation ratio O(log4 n/ log log3 n).

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: TRAFFIC-AWARE VM MIGRATION IN TOPOLOGY-ADAPTIVE DCN 3439

D. Migration Phase vs. Communication Phase

As hardware upgrades quickly, VM consolidation is com-
mon in data centers, e.g., a physical server can host more than
60 VMs [42]. As different services running in data centers gen-
erate various traffic patterns and huge amounts of flows with
different service requirements (e.g., SLAs [43]), VM migration
becomes essential and frequent, thus generating non-ignorable
migration traffic. In order to satisfy different requirements,
providing performance guarantees by balancing the migration
cost and communication cost through the weight-balancer is
necessary and efficient.

VII. RELATED WORK

A. Hybrid Data Center Networking

Recent years, there are mainly two technologies to achieve
the topology-adaptive objective in DCNs. The first is adding
the 60GHz wireless radios or the Free-Space Optics (FSO,
which is another wireless technology that differs from 60GHz)
to build configurable wireless links [11], [12], [14], [16], [17].
The second is adding the optical circuit switches (OCS),
which has the ability of fast circuit switching to adapt
the topology [13], [15], [18], [19]. Researchers propose to
construct hybrid DCNs with these technologies to make
the adaptive-topology DCNs into reality. Flyway is the first
work that proposes to apply 60GHz wireless technology
in DCNs [17]. To overcome the easy-blocking problem,
Zhou et al. [16] first take ceiling mirrors as reflecting medium
to avoid signal blocking and transmit data flows efficiently.
Ghobadi et al. [11] explore FSO-based interconnections in
data center, which enables the direct links between all pairs of
racks. Besides wireless technologies, some researchers lever-
age circuit switching technology to build hybrid DCNs. Chen
et al. [44] propose an optical switching architecture for DCNs
to achieving full flexibility. XFabric reconfigures topology and
uplink placement using a set of independent small circuit
switches in in-rack networks, efficiently coping with partial
reconfigurability [45]. The focus of the above studies is on the
design of the hybrid network architecture in the data center,
while in this paper we take advantage of the reconfigurable
links to optimize the VM migration in topology-adaptive DCN.

B. VM Migration in Data Centers

Employing VMs in data centers is a common practice and
can bring many benefits, such as improved resource utilization,
load balancing and fault tolerance. Barham et al. [46] show
that several VMs running on a physical machines perform
well in utilizing physical resources. Birke et al. [42] provide
a multi-faceted analysis of virtualization in production data
center and show its efficiency.

In order to improve the performance of VMs and reduce
the traffic cost, VM migration is necessary and efficient for
data centers. Clark et al. [3] propose the live migration mech-
anism to reduce the performance loss brought by VM migra-
tion. Zhang et al. [4] and Wang et al. [5] propose to optimize
the migration time and service downtime through bandwidth
allocation. Recent effort in [8], [9] further take the routing
options into account and propose to optimize VM migration
by placing VMs properly and selecting routing paths for
VM communications. Different from the previous studies
which focus on VM migration in a static network topology,
we study the VM migration with a reconfigurable network
topology and consider the joint optimization of migration

phase and communication phase. As intensive communications
increase quickly in DCNs, VM migration is a good option for
data center operators to optimize flow scheduling and make
full use of the available resources (e.g., CPU, memory and
bandwidth).

VIII. CONCLUSION

In this paper, we propose a novel paradigm of topology-
adaptive DCN to facilitate more efficient VM migration. We
show that the ability of flexibly reconfiguring the DCN topol-
ogy can be exploited to break through the performance bottle-
neck due to the previous difficulty in trading-off the migration
cost and communication cost. We formulate the problem of
jointly minimizing the migration cost and communication cost
in an adaptive network topology, and show its NP-hardness.
For data centers with different flow characteristics, we develop
PDR and ODM to schedule the VM migrations periodically
and in real-time, respectively. PDR can solve the optimization
problem in polynomial time with a proved approximation ratio.
It can be applied in data centers where flow demands can be
predicted based on history information. ODM schedules the
VM migration requests in real-time, which is applicable to
run in the data centers with highly random and dynamic flows.
We further present the theoretical analysis on the performance
bound of ODM. The real-trace based simulations and experi-
ments demonstrate the advantage of our solutions in achieving
a smaller flow completion time while ensuring a much lower
VM migration cost compared to other state-of-art solutions.

REFERENCES

[1] V. Medina and J. M. García, “A survey of migration mechanisms of
virtual machines,” ACM Comput. Surv., vol. 46, no. 3, p. 30, 2014.

[2] B. Hu, S. Chen, J. Chen, and Z. Hu, “A mobility-oriented scheme for
virtual machine migration in cloud data center network,” IEEE Access,
vol. 4, pp. 8327–8337, 2016.

[3] C. Clark et al., “Live migration of virtual machines,” in Proc. NSDI,
2005, pp. 273–286.

[4] J. Zhang, F. Ren, and C. Lin, “Delay guaranteed live migration of virtual
machines,” in Proc. IEEE INFOCOM, Apr. 2014, pp. 574–0582.

[5] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” in Proc. IEEE INFOCOM,
Apr. 2015, pp. 487–495.

[6] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
INFOCOM, 2010, pp. 1–9.

[7] A. Munir, T. He, R. Raghavendra, F. Le, and A. X. Liu, “Network
scheduling aware task placement in datacenters,” in Proc. 12th Int.
Conf. Emerg. Netw. EXperim. Technol. (CoNEXT), New York, NY, USA,
2016, pp. 221–235. [Online]. Available: http://doi.acm.org/10.1145/
2999572.2999588

[8] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM place-
ment and routing for data center traffic engineering,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 2876–2880.

[9] L. Wang, F. Zhang, A. V. Vasilakos, C. Hou, and Z. Liu, “Joint
virtual machine assignment and traffic engineering for green data center
networks,” ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 3,
pp. 107–112, 2014.

[10] V. Shrivastava et al., “Application-aware virtual machine migration in
data centers,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 66–70.

[11] M. Ghobadi et al., “ProjecToR: Agile reconfigurable data center inter-
connect,” in Proc. SIGCOMM, 2016, pp. 216–229.

[12] Y. Cui et al., “Diamond: Nesting the data center network with wireless
rings in 3D space,” in Proc. NSDI, 2016, pp. 657–669.

[13] H. Liu et al., “Scheduling techniques for hybrid circuit/packet networks,”
in Proc. CoNEXT, 2015, p. 41.

[14] N. Hamedazimi et al., “FireFly: A reconfigurable wireless data center
fabric using free-space optics,” in Proc. SIGCOMM, 2014, pp. 319–330.

[15] G. Porter et al., “Integrating microsecond circuit switching into the data
center,” in Proc. SIGCOMM, 2013, pp. 447–458.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

3440 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

[16] X. Zhou et al., “Mirror mirror on the ceiling: Flexible wireless links for
data centers,” in Proc. SIGCOMM, 2012, pp. 443–454.

[17] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall,
“Augmenting data center networks with multi-gigabit wireless links,”
in Proc. SIGCOMM, 2011, pp. 38–49.

[18] G. Wang et al., “c-Through: Part-time optics in data centers,” in Proc.
SIGCOMM, 2010, pp. 327–338.

[19] N. Farrington et al., “Helios: A hybrid electrical/optical switch
architecture for modular data centers,” in Proc. SIGCOMM, 2010,
pp. 339–350.

[20] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers,” Comput. Netw., vol. 57,
no. 1, pp. 179–196, 2013.

[21] P.-J. Wan, “Multiflows in multihop wireless networks,” in Proc.
MobiHoc, 2009, pp. 85–94.

[22] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1979, pp. 61–62.

[23] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal flow
routing in datacenters via local link balancing,” in Proc. CoNEXT, 2013,
pp. 151–162.

[24] Matching Polytope. Accessed: Jan. 28, 2010. [Online]. Available:
http://www.imsc.res.in/meena/matching/polytope

[25] M. Hoefer, T. Kesselheim, and B. Vöcking, “Approximation algorithms
for secondary spectrum auctions,” ACM Trans. Internet Technol., vol. 14,
nos. 2–3, p. 16, 2014.

[26] R. Carr and S. Vempala, “Randomized metarounding,” in Proc. STOC,
2000, pp. 58–62.

[27] P. Raghavan and C. D. Tompson, “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[28] D. Richert and J. Cortés, “Robust distributed linear programming,”
IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2567–2582,
Oct. 2015.

[29] T. Benson, A. Akella, and D. A. Maltz, “Network traffic char-
acteristics of data centers in the wild,” in Proc. IMC, 2010,
pp. 267–280.

[30] M.-R. Ra et al., “Energy-delay tradeoffs in smartphone applications,” in
Proc. 8th Int. Conf. Mobile Syst., Appl., Ser., 2010, pp. 255–270.

[31] M. J. Neely, “Energy optimal control for time-varying wireless net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934,
Jul. 2006.

[32] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures Commun.
Netw., vol. 3, no. 1, pp. 1–211, 2010.

[33] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, 2010, p. 19.

[34] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. SIGCOMM, 2008, pp. 63–74.

[35] D. Erickson, B. Heller, N. McKeown, and M. Rosenblum, “Using
network knowledge to improve workload performance in virtualized data
centers,” in Proc. IEEE IC2E, Mar. 2014, pp. 185–194.

[36] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” document
RFC 2992, IETF, 2000.

[37] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. 9th
ACM SIGCOMM Conf. Internet Meas. Conf., 2009, pp. 202–208.

[38] X.-Y. Li and Y. Wang, “Simple approximation algorithms and PTASs
for various problems in wireless ad hoc networks,” J. Parallel Distrib.
Comput., vol. 66, no. 4, pp. 515–530, 2006.

[39] Floodlight SDN Controller. [Online]. Available: http://www.
projectfloodlight.org/floodlight/

[40] Virtual Box. [Online]. Available: https://www.virtualbox.org/
[41] Open vSwitch. [Online]. Available: http://openvswitch.org/
[42] R. Birke, M. Björkqvist, C. Minkenberg, M. Schmatz, and L. Y. Chen,

“When virtual meets physical at the edge: A field study on datacenters’
virtual traffic,” ACM SIGMETRICS Perform. Eval. Rev., vol. 43, no. 1,
pp. 403–415, 2015.

[43] P. Patel, A. H. Ranabahu, and A. P. Sheth. (2009). Service
Level Agreement in Cloud Computing. [Online]. Available: http://
corescholar.libraries.wright.edu/knoesis/78

[44] K. Chen et al., “OSA: An optical switching architecture for data cen-
ter networks with unprecedented flexibility,” IEEE/ACM Trans. Netw.,
vol. 22, no. 2, pp. 498–511, Apr. 2014.

[45] S. Legtchenko et al., “XFabric: A reconfigurable in-rack network for
rack-scale computers,” in Proc. 13th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2016, pp. 15–29.

[46] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 164–177, Dec. 2003.

Yong Cui received the B.E. and Ph.D. degrees in
computer science and engineering from Tsinghua
University, China, in 1999 and 2004, respectively.
He is currently a Full Professor with the Computer
Science Department, Tsinghua University. He has
authored over 100 papers in the refereed confer-
ences and journals with several best paper awards.
He has coauthored seven Internet standard docu-
ments (RFC) for his proposal on IPv6 technologies.
His major research interests include mobile cloud
computing and network architecture. He is currently

a Working Group Co-Chair in the IETF. He served or serves at the editorial
boards on the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, and the
IEEE Internet Computing.

Zhenjie Yang received the B.E. degree in network-
ing engineering from the Dalian University of Tech-
nology, Liaoning, China, in 2015. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His research interests include
data center networking and cloud computing.

Shihan Xiao received the B.Eng. degree in elec-
tronic and information engineering from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2012. He is currently pursuing
the Ph.D. degree with the Department of Com-
puter Science and Technology, Tsinghua University,
Beijing. His research interests are in the areas of
data center networking and cloud computing.

Xin Wang received the B.S. and M.S. degrees in
telecommunications engineering and wireless com-
munications engineering from the Beijing University
of Posts and Telecommunications, Beijing, China,
and the Ph.D. degree in electrical and computer
engineering from Columbia University, New York,
NY, USA. She was a member of Technical Staff
in the area of mobile and wireless networking at
Bell Labs Research, Lucent Technologies, NJ, USA,
and an Assistant Professor with the Department of
Computer Science and Engineering, State University

of New York at Buffalo, Buffalo, NY. She is currently an Associate Professor
with the Department of Electrical and Computer Engineering, Stony Brook
University, Stony Brook, NY. Her research interests include algorithm and
protocol design in wireless networks and communications, mobile and dis-
tributed computing, as well as networked sensing and detection. She received
the NSF Career Award in 2005 and the ONR Challenge Award in 2010.
She has served in executive committee and technical committee of numerous
conferences and funding review panels, and serves as an Associate Editor of
the IEEE TRANSACTIONS ON MOBILE COMPUTING.

Shenghui Yan received the B.S. degree from the
Computer Science and Technology Department, Bei-
hang University, Beijing, China, in 2014, and the
M.S. degree from the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
in 2017. His research interests are in the areas of
data center networking.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2022 at 03:33:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

